If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+7t-120=0
a = 1; b = 7; c = -120;
Δ = b2-4ac
Δ = 72-4·1·(-120)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-23}{2*1}=\frac{-30}{2} =-15 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+23}{2*1}=\frac{16}{2} =8 $
| 3=x*18 | | 2(x+3)-x=x+3 | | X+6-2x=x-24= | | 17w+20=-20-20+13w | | 28+4r=-8(1-r)+8r | | 7t^2+80t-1200=0 | | 2x-3/5+4x+5/2=11/2 | | 15+6z=15z-2-8z | | 2x-3/4=½ | | 3x/4-2x/3=10 | | -2+3r=13r+18-11r | | 10b+3=8b+3 | | 19-13g+16=-2g-20 | | 0,6(x-4)=0,2(2x+4) | | 1.2+x=12.3 | | 5m+1.5m=-20 | | 17-20b-12b=-7-20b | | 5m+1.5m=-20 | | -15-2q-19q=-19q+5 | | 2(6p-8)-8=8+8p | | 6(1/2x-2)=18 | | 12d-12=24 | | -8x+3x=-6x+20x-35 | | 18n=19n+19 | | 5m+2m=1/2m-20 | | 81/x=19 | | 5m+2m=1/2m-20 | | 20-5d=-7d-18 | | 4a+5a=8a | | 5m+2m=12m-20 | | 1/3(6x-9)=2x3 | | X-42=98-9x= |